Volume 30

Number 4

February 20, 1991

Inorganic Chemistry

© Copyright 1991 by the American Chemical Society

Communications

An Acidic η^2 -Dihydrogen Complex Protonating Coordinated Dinitrogen

Interest in η^2 -dihydrogen complexes^{1,2} is turning from their structure and bonding to their modes of reactivity. An intriguing property of certain transition-metal complexes is that they can coordinate dihydrogen and turn it into a strong acid—the heterolytic cleavage of dihydrogen. Chinn and Heinekey have characterized two such acidic dihydrogen complexes, [Re- $(C_5Me_5)(CO)(NO)(\eta^2-H_2)]^+$ and $[Ru(C_5Me_5)(CO)_2(\eta^2-H_2)]^+$, with pK_n values less than zero on the aqueous scale.³ We have determined that the series of dihydrogen complexes [Ru- (C_5R_5) (diphosphine) (η^2-H_2)]⁺ have p K_a values which range from 4.3 for complex 3 (R = H, diphosphine = $PR'_2CH_2CH_2PR'_2$, R' = p-CF₃C₆H₄, dtfpe) to about 12 (R = Me, R' = Me, dmpe) by use of equilibria with protonated tertiary phosphines of known pK_a .⁴ Similarly the pK_a values for the complexes [Ru- $(H)(H_2)(diphosphine)_2$]⁺ range from 9.0 (R' = p-CF₃C₆H₄) to greater than 16 for complex 5 (R' = Et, depe).⁵ We report here that our most acidic dihydrogen complex 3 protonates coordinated dinitrogen in the complex $W(N_2)_2(dppe)_2$ (1) (R' = Ph, dppe) to give the hydrazido(2-) complex [W(NNH₂)(F)(dppe)₂]BF₄ (2), whereas the least acidic one, complex 5, does not. Complex 2 was originally prepared by reaction of 1 with HBF₄·Et₂O (pK_a < 0),6 but certain very acidic carbonyl hydride complexes as the tetrafluoroborate salts also convert complex 1 to 2.7 Very acidic dihydrogen complexes can be prepared directly from H₂(g) at 1 atm, $\leq 300 \text{ K}$, 3,5 and 1 is made by coordination of N₂(g) at 1 atm, 293 K.⁸ The present work demonstrates that the reaction of H₂ and N₂, when coordinated, is also possible under mild conditions.

The new, acidic dihydrogen complex 3^9 was prepared by titrating a solution of the monohydride complex $Ru(C_5H_5)(H)$ -(dtfpe) (4)¹⁰ in ether with HBF₄ until 3 had precipitated out

- (1) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95-101.
- (2) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120 and references therein.
- (3) Chinn, M. S.; Heinekey, D. M.; Payne, N. G.; Sofield, C. D. Organometallics 1989, 8, 1824-1826.
- (4) (a) New abbreviation introduced in this work: "dtfpe" = "bis[bis(tri-fluorotolyl)phosphino]ethane", which by current IUPAC rules is 1,2-ethanediylbis[bis[(trifluoromethyl)phenyl]phosphine]. (b) Jia, G.; Morris, R. H. J. Am. Chem. Soc., in press.
- (5) Cappellani, E. P.; Drouin, S. M.; Jia, G.; Maltby, P. A.; Morris, R. H.; Schweitzer, C. T. Work in progress.
- (6) Chatt, J.; Pearman, A. J.; Richards, R. L. J. Chem. Soc., Dalton Trans. 1976, 1520-1524.
- (7) Imaeda, M.; Nishihara, H.; Nakano, K.; Ichida, H.; Kobayashi, A.; Saito, T.; Sasaki, Y. Inorg. Chem. 1985, 24, 1246-1250.
- (8) Bell, B.; Chatt, J.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1972, 2492-2496.
- (9) ${}^{31}P_{1}^{11}H_{1}^{11}NMR$ (CH₂Cl₂/C₆D₆): δ 80.5 (s, [CpRu(η^{2} -H₂)(dtfpe)]⁺), 69.3 (s, [CpRu(H)₂(dtfpe)]⁺). ${}^{11}H_{1}^{11}NMR$ (CD₂Cl₂): δ -8.76 (br, Ru(η^{2} -H₂)), -8.61 (t, J(PH) = 28.8 Hz, RuH₂), 1.5–3.2 (m, CH₂), 4.92 (s, CpRu-(η^{2} -H₂)), 5.58 (s, CpRuH₂), 7.6–8.1 (m, Ph). Anal. Calcd for C₃₅H₂₇BF₁₆P₂Ru: C, 45.43; H, 2.94. Found: C, 45.02; H, 2.97.

Scheme I

quantitatively. The white solid was carefully recrystallized from CH_2Cl_2 /ether to ensure complete removal of excess acid. Complex 3 exists in solution as a slowly (half-life of seconds) interconverting mixture of two tautomers, $[Ru(C_5H_5)(dtfpe)(\eta^2-H_2)]^+$ (3a) and $[Ru(C_5H_5)(H)_2(dtfpe)]^+$ (3b), in the ratio 1:1.6. A similar mixture of tautomers in ratio 1:2.0 has been reported for the slightly more electron-rich complex $[Ru(C_5H_5)H_2(dppe)]^+$;¹² thus, the electron-withdrawing dtfpe¹³ ligand shifts the equilibrium toward the dihydrogen form (relative to the "isosteric" dppe ligand), as might be expected. The complex $[Ru(C_5H_5)H_2(dmpe)]^+$ has an even larger ratio of dihydrogen to dihydride forms (1:0.17), but this must be a steric effect. He presence of the dihydrogen ligand in 3a was verified by preparing the corresponding η^2 -HD derivative of $3a^{15}$ and observing the 1:1:1 H NMR resonance at -8.80 ppm with the coupling $^1J(H,D) = 25.3$ HZ. The isotopomer $[Ru(C_5H_5)(H)(D)(dtfpe)]^+$ gives a triplet at -8.67 ppm with $^2J(H,P) = 28.8$ Hz.

The p K_a of 3 was estimated by observing the equilibrium of 4 and $[HP(p-tol)_3]BPh_4$ by ^{31}P NMR spectroscopy (eq 1). In-

$$4 + [HP(p-tol)_3]^+ \approx 3 + P(p-tol)_3$$
 (1)

- (10) 4 was prepared in a fashion similar to that for CpRuH(dppe). ¹¹ ³¹P[¹H] NMR (C_6H_6/C_6D_6): δ 92.6 (s). ¹H NMR (C_6D_6): δ -13.47 (t, J(PH) = 34.4 Hz, Ru-H), 1.6-1.8 (m, CH₂), 4.62 (s, Cp), 7.1-7.6 (m, Ph). Anal. Calcd for $C_{35}H_{26}F_{12}P_2$ Ru: C, 50.19; H, 3.12. Found: C, 49.62, H, 3.14.
- (11) Bruce, M. I.; Humphrey, M. G.; Swincer, A. G.; Wallis, R. C. Aust. J. Chem. 1984, 37, 1747-1755.
 (12) Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun.
- (12) Controy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun 1987, 1675–1676.
- (13) Chatt, J.; Hussain, W.; Leigh, G. J.; Mohd. Ali, H.; Pickett, C. J.; Rankin, D. A. J. Chem. Soc., Dalton Trans. 1985, 1131-1136.
 (14) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109,
- (14) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109, 5865-5867.
- (15) [Ru(C₅H₅)(dtfpe)(η²-HD)]⁺ was prepared by reacting Ru(C₅H₅)-(H)(dtfpe) (4) in ether with HBF₄·Et₂O in D₂O.

tegration of the gated-{1H}-decoupled 31P resonances for the various species in equilibrium in CH₂Cl₂ gave equilibrium constants of 2.8 for 3a in equilibrium with 4 and 3.9 for 3b. Thus, the p K_a - $\{Ru(\eta^2-H_2)\}\$ value for 3a is estimated to be 4.3 on the basis of the pK_a value of 3.85 (aqueous scale)¹⁶ for $[HP(p-tol)_3]^+$ whereas the $pK_a[Ru(H)_2]$ value for **3b** is estimated to be 4.4.¹⁷

A 2-equiv amount of 3 reacts with 1 equiv of 1 in THF to give 2 equiv of 4 and 1 equiv of $[W(NNH_2)(F)(dppe)_2]BF_4$ (2)⁶ according to Scheme I. The reaction occurs in less than 10 min and is quantitative as indicated by ³¹P NMR spectroscopy. Thus, when 1 (45.5 ppm) is added to the solution of 3 in THF, resonances at 81.1 (3a) and 70.0 (3b) and 93.0 ppm (4, small) are replaced by just the resonance at 93.0 ppm (4) together with the appearance of a new resonance at 35.3 ppm (2, doublet with ¹⁸³W satellites, $^{2}J(P,F) = 41 \text{ Hz}, ^{1}J(P,W) = 288 \text{ Hz}).$

No reaction occurs between 1 and 2 equiv of trans-[Ru- $(H)(\eta^2-H_2)(PEt_2CH_2CH_2PEt_2)_2]BF_4$ (6). The p K_a of the latter complex is estimated to be near 16, since its conjugate base, Ru(H)₂(PEt₂CH₂CH₂PEt₂)₂, is protonated by neat EtOH, which has a p K_a of 15.8, to give 6 but is not protonated by iPrOH (p K_a ~16). The p K_a of the related complex [Fe(H)(η^2 -H₂)-(PMc₂CH₂CH₂PMc₂)₂]⁺ has been estimated to be 15.8.¹⁹

Thus, the heterolytic cleavage of dihydrogen can lead to the protonation of coordinated dinitrogen when the dihydrogen/dihydride complex is sufficiently acidic. The dihydrogen form is expected to transfer protons more quickly than the dihydride form.²⁰ Methods to prepare complex 3 directly from H₂ gas are being investigated. We have recently found that a related complex, $[Ru(H)(H_2)(dtfpe)_2]BF_4$, which can be prepared from $H_2(g)$, also converts 1 into 2, although in lower yield than the reaction involving 3.

Acknowledgment. This research was supported by grants to R.H.M. from the Natural Sciences and Engineering Research Council of Canada and from the donors of the Petroleum Research Fund, administered by the American Chemical Society, and by a loan of ruthenium chloride from Johnson Matthey Co.

- (16) Bush, R. C.; Angelici, R. J. *Inorg. Chem.* 1988, 27, 681-686. (17) $K_{3a} = \{[3a][P(p-tol)_3]\}/\{[4][HP(p-tol)_3^+]\}; pK_a[Ru(\eta^2-H_2)] = 3.85 pK_{3a};$ similar equations for 3b. The pK_a values of 3a and 3b are close because the concentrations of the two complexes are similar
- (18) Perrin, D. D.; Dempsey, B.; Serjeant, E. P. pKa Prediction for Organic Acids and Bases; Chapman and Hall: London, 1979.
- (19) Baker, M. V.; Field, L. D.; Young, D. J. J. Chem. Soc., Chem. Commun. 1988, 546-548.
- Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112, 5166-5175.

Department of Chemistry and Scarborough Campus University of Toronto Toronto M5S 1A1, Canada

Guochen Jia Robert H. Morris* Caroline T. Schweitzer

Received August 31, 1990

Molecular Precursors for Indium Phosphide and Synthesis of Small III-V Semiconductor Clusters in Solution

The preparation and physical characterization of semiconductor clusters in the nanometer-size regime is currently attracting considerable attention. While most studies in this area focus on II-VI semiconductors² (e.g. CdS, CdSe), the technological importance of III-V semiconductors (e.g. GaAs, InP)³ makes an investigation of "quantum size effects" in these materials desirable.4 We have previously reported the chemical conversion of the organometallic arsinogallane Cp*2Ga-As(SiMe3)2 into small gallium arsenide clusters.5 Herein we describe some results of related work on indium phosphide colloids.

Precursor molecules 1-4 containing covalently bound indium and phosphorus in a 1:1 ratio were synthesized by combining alkylindium chlorides R(R')InCl with either $P(SiMe_3)_3$ or $LiP(SiMe_3)_2$ (see Scheme I).^{6,7} Virtual coupling of the trimethylsilyl protons to two phosphorus nuclei in the ¹H NMR spectrum revealed the dimeric nature of the compounds in solution. The solid-state structure of the representative $[Cp^*(Cl)In(\mu-P-$ (SiMc₃)₂)]₂ (I)⁸ was determined by X-ray diffraction (see Figure 1).9 The molecule is a head-to-tail dimer and exhibits crystallographic inversion symmetry. Its In₂P₂ core is a nearly perfect square with an average In-P distance of 2.62 Å, slightly longer than the sum of the covalent radii (2.50 Å). The bulky Cp* ligands are situated trans to each other and are bonded to indium in a η^1 -fashion. The five-membered ring shows the expected bond length alternation and angles of a localized cyclopentadiene. However, their rotation is rapid on the NMR time scale in solution and leads to observation of one and two Cp* resonances in the ¹H and ¹³C spectra, respectively.

Addition of 3.0-5.0 equiv of methanol to solutions of precursors 1-4 in a closed vessel ultimately resulted in the precipitation of

- (a) Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983, 79, 1086. (b) Weller, H.; Koch, U.; Gutierrez, M.; Henglein, A. Ber. Bunsen-Ges. Phys. Chem. 1984, 88, 649. (c) Fojtik, A.; Weller, H.; Koch, U.; Henglein, A. Ber. Bunsen-Ges. Phys. Chem. 1984, 88, 969. (d) Nozik, A. J.; Williams, F.; Nenadovic, M. T.; Rajh, T.; Micic, O. I. J. Phys. Chem. 1985, 89, 397. (e) Weller, H.; Schmidt, H. M.; Koch, 1. J. Phys. Chem. 1985, 89, 397. (e) Weiter, H.; Schmidt, H. M.; Koch, U.; Fojtik, A.; Baral, S.; Henglein, A.; Kunath, W.; Weiss, K.; Dieman, E. Chem. Phys. Lett. 1986, 124, 557. (f) Wang, Y.; Herron, N. J. Phys. Chem. 1987, 91, 257. (g) Kamat, P. V.; Dimitrijevic, N. M.; Fessenden, R. W. J. Phys. Chem. 1987, 91, 396. (h) Dev, S.; Taniguchi, A.; Yamamoto, T.; Kubota, K.; Tominaga, Y. Colloid Polym. Sci. 1987, 265, 922. (i) Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987, 109, 5649. (j) Petit, C.; Pileni, M. P. J. Phys. Chem. 1988, 92, 2282. (k) Fischer, Ch. H.; Lilie, J.; Weller, H.; Katsikas, L.; Henglein, A. Ber. Bunsen-Ges. Phys. Chem. 1989, 93, 61. (1) Herron, N.; Wang, Y.; Eddy, M. M.; Stucky, G. D.; Cox, D. E.; Möller, K.; Bein, T. J. Am. Chem. Soc. 1989, 111, 530. (m) Brennan, J. G.; Sicgrist, T.; Carroll, P. J.; Stuczynski, S. M.; Brus, L. E.; Steigerwald, M. L. J. Am. Chem. Soc. 1989, 111, 4141. (n) Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Nature 1989, 338, 596. (o) Shiang, J. J.; Goldstein, A. N.; Alivisatos, A. P. J. Chem. Phys. 1990, 92, 3232. (a) Sandroff, C. J.; Harbison, J. P.; Ramesh, R.; Andrejco, M. J.; Hedge, M. S.; Hwang, D. M.; Chang, C. C.; Vogel, E. M. Science 1989.
- 245, 391. (b) MacDougall, J. E.; Eckert, H.; Stucky, G. D.; Herron, N.; Wang, Y.; Möller, K.; Bein, T.; Cox, D. J. Am. Chem. Soc. 1989,
- (4) (a) Glass, A. M. Science 1987, 235, 1003. (b) Narayanamurti, V. Ibid. 1987, 235, 1023. (c) Beneking, H. J. Electrochem. Soc. 1989, 136, 2680. (d) Koch, S. W. Phys. Bl. 1990, 46, 167.
- Byrne, E. K.; Parkanyi, L.; Theopold, K. H. Science 1988, 241, 332. For a review of compounds with covalent bonds between elements of groups 13 and 15, see: Cowley, A. H.; Jones, R. A. Angew. Chem. 1989, 101, 1235; Angew. Chem., Int. Ed. Engl. 1989, 28, 1208. For recent 101, 1235; Angew. Chem., Int. Ed. Engl. 1989, 28, 1208. For recent reports on compounds with covalent In-P bonds, see: (a) Healy, M. D.; Laibinis, P. E.; Stupik, P. D.; Barron, A. R. J. Chem. Soc., Chem. Commun. 1989, 359. (b) Alcock, N. W.; Degnan, I. A.; Wallbridge, M. G. H.; Powell, H. R.; McPartlin, M.; Sheldrick, G. M. J. Organomet. Chem. 1989, 361, C33. (c) Aitchison, K. A.; Backer-Dirks, J. D. J.; Bradley, D. C.; Faktor, M. M.; Frigo, D. M.; Hursthouse, M. B.; Hussain, B.; Short, R. L. J. Organomet. Chem. 1989, 366, 11. (d) Rossetto, G.; Ajo, D.; Brianese, N.; Casellato, U.; Ossola, F.; Porchia, M. Vittadini, M. Zanella, P. Graziani, R. Inorg. Chim. Acta 1990. M.; Vittadini, M.; Zanella, P.; Graziani, R. Inorg. Chim. Acta 1990,
- 170, 95.
- 170, 95. For a similar synthesis of Cd₃P₂, see: Goel, S. C.; Chiang, M. Y.; Buhro, W. E. J. Am. Chem. Soc. **1990**, 112, 5636. Analytical data for **1** are as follows. ¹H NMR (C_6D_6): δ 1.97 (s, 15 H), 0.51 (t, 18 H, J_{PH} = 3.0 Hz). ¹³C NMR (C_6D_6): 121.7 (s), 13.4 (s), 4.7 (s). ³¹P NMR (C_6D_6): δ -148.6 (s). IR (KBr): 2955 (m), 2901 (m), 2855 (m), 1442 (w), 1406 (w), 1375 (w), 1282 (m), 1261 (m), 1264 (s), 1145 (s), 1145 (s), 1282 (m), 1242 (m), 1263 (m), 1264 (m), 1265 (m), 1246 (s), 1145 (w), 1039 (w), 943 (w), 848 (s), 825 (s), 752 (w), 688 (w), 626 (m), 453 cm⁻¹ (m). mp: 126–135 °C dec. Anal. Calcd for $C_{16}H_{33}CIInPSi_2$: C, 41.51; H, 7.18. Found: C, 41.21; H, 7.26.
- Yellow rectangular prisms from pentane; monoclinic $\bar{P}2_1/n$; a=9.722 (3) Å, b=18.073 (5) Å, c=12.983 (11) Å, $\beta=97.9$ (3)°, and Z=4; R=0.044 and $R_w=0.047$.

⁽a) Brus, L. J. Phys. Chem. 1986, 90, 2555. (b) Fendler, J. Chem. Rev. 1987, 87, 877. (c) Henglein, A. In Topics in Current Chemistry; Steckhahn, E., Ed.; Springer: Berlin, 1988; Vol. 143, p 113. (d) Andres, R. P.; Averbeck, R. S.; Brown, W. L.; Brus, L. E.; Goddard, W. A.; Kaldor, A.; Louie, S. G.; Moscovits, M.; Peercy, P. S.; Riley, S. J.; Siegel, R. W.; Spaepen, F.; Wang, Y. J. Mater. Res. 1989, 4, 704. (e) Henglein, A. Chem. Rev. 1989, 89, 1861. (f) Stucky, G. D.; MacDougall, J. E. Science 1990, 247, 669. (g) Steigerwald, M. L.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183. L. E. Acc. Chem. Res. 1990, 23, 183.